Learning Symmetry Features for Face Detection Based on Sparse Group Lasso

نویسندگان

  • Qi Li
  • Zhenan Sun
  • Ran He
  • Tieniu Tan
چکیده

Face detection is of fundamental importance in face recognition, facial expression recognition and other face biometrics related applications. The core problem of face detection is to select a subset of features from massive local appearance descriptors such as Haar features and LBP. This paper proposes a two stage feature selection method for face detection. Firstly, feature representation of the symmetric characteristics of face pattern is formulated as a structured sparsity problem and sparse group lasso is used to select the most effective local features for face detection. Secondly, minimal redundancy maximal relevance is used to remove the redundant features in group sparsity learning. Experimental results demonstrate that the proposed feature selection method has better generalization ability than Adaboost and Lasso based feature selection methods for face detection problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

Classification with Sparse Overlapping Groups

Binary logistic regression with a sparsity constraint on the solution plays a vital role in many high dimensional machine learning applications. In some cases, the features can be grouped together, so that entire subsets of features can be selected or zeroed out. In many applications, however, this can be very restrictive. In this paper, we are interested in a less restrictive form of structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013